Highest vectors of representations (total 20) ; the vectors are over the primal subalgebra. | \(-h_{5}+h_{3}\) | \(-h_{6}+h_{1}\) | \(-g_{20}+1/2g_{16}\) | \(g_{25}+g_{21}\) | \(g_{14}+1/4g_{10}\) | \(g_{27}-1/4g_{15}-2/3g_{8}+5/6g_{4}\) | \(g_{19}+1/4g_{15}+2g_{8}+1/2g_{4}\) | \(-g_{24}+1/2g_{15}-8/3g_{8}+1/3g_{4}\) | \(g_{13}+1/4g_{9}\) | \(g_{22}+g_{18}\) | \(-g_{17}+1/2g_{12}\) | \(g_{31}\) | \(g_{28}\) | \(g_{33}\) | \(g_{34}-2g_{30}+2g_{23}\) | \(g_{32}\) | \(g_{26}\) | \(g_{29}\) | \(g_{35}\) | \(g_{36}\) |
weight | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(0\) | \(2\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}-4\psi_{1}+2\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+4\psi_{1}-2\psi_{2}\) | \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}-4\psi_{1}+2\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}+4\psi_{1}-2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(6\omega_{1}\) | \(6\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}-2\psi_{2}} \) → (2, -2, -2) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}-4\psi_{2}} \) → (2, 2, -4) | \(\displaystyle V_{2\omega_{1}-4\psi_{1}+2\psi_{2}} \) → (2, -4, 2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+4\psi_{1}-2\psi_{2}} \) → (2, 4, -2) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}+4\psi_{2}} \) → (2, -2, 4) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}+2\psi_{2}} \) → (2, 2, 2) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}-2\psi_{2}} \) → (4, -2, -2) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}-4\psi_{2}} \) → (4, 2, -4) | \(\displaystyle V_{4\omega_{1}-4\psi_{1}+2\psi_{2}} \) → (4, -4, 2) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+4\psi_{1}-2\psi_{2}} \) → (4, 4, -2) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}+4\psi_{2}} \) → (4, -2, 4) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}+2\psi_{2}} \) → (4, 2, 2) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}-2\psi_{1}-2\psi_{2}\) \(-2\psi_{1}-2\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(2\omega_{1}-4\psi_{1}+2\psi_{2}\) \(-4\psi_{1}+2\psi_{2}\) \(-2\omega_{1}-4\psi_{1}+2\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+4\psi_{1}-2\psi_{2}\) \(4\psi_{1}-2\psi_{2}\) \(-2\omega_{1}+4\psi_{1}-2\psi_{2}\) | \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(2\omega_{1}+2\psi_{1}+2\psi_{2}\) \(2\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-2\psi_{2}\) \(2\omega_{1}-2\psi_{1}-2\psi_{2}\) \(-2\psi_{1}-2\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-2\psi_{2}\) \(-4\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(4\omega_{1}+2\psi_{1}-4\psi_{2}\) \(2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-4\psi_{2}\) \(-4\omega_{1}+2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}-4\psi_{1}+2\psi_{2}\) \(2\omega_{1}-4\psi_{1}+2\psi_{2}\) \(-4\psi_{1}+2\psi_{2}\) \(-2\omega_{1}-4\psi_{1}+2\psi_{2}\) \(-4\omega_{1}-4\psi_{1}+2\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+4\psi_{1}-2\psi_{2}\) \(2\omega_{1}+4\psi_{1}-2\psi_{2}\) \(4\psi_{1}-2\psi_{2}\) \(-2\omega_{1}+4\psi_{1}-2\psi_{2}\) \(-4\omega_{1}+4\psi_{1}-2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}+4\psi_{2}\) \(2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+4\psi_{2}\) \(-4\omega_{1}-2\psi_{1}+4\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+2\psi_{2}\) \(2\omega_{1}+2\psi_{1}+2\psi_{2}\) \(2\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+2\psi_{2}\) \(-4\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{-4\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{4\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{-4\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}+2\psi_{2}} \oplus M_{-4\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{4\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}-2\psi_{2}} \oplus M_{-4\omega_{1}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{-4\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{4\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-4\psi_{2}}\oplus M_{2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}-4\psi_{1}+2\psi_{2}}\oplus M_{-4\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}-4\psi_{1}+2\psi_{2}} \oplus M_{-4\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{2\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{4\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}+4\psi_{1}-2\psi_{2}} \oplus M_{-4\omega_{1}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+4\psi_{2}}\oplus M_{-2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle 2M_{6\omega_{1}}\oplus 2M_{4\omega_{1}}\oplus 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\oplus 2M_{-4\omega_{1}}\oplus 2M_{-6\omega_{1}}\) |
2\\ |